An optimized method for 15N R1 relaxation rate measurements in non-deuterated proteins

نویسندگان

  • Margarida Gairí
  • Andrey Dyachenko
  • M. Teresa González
  • Miguel Feliz
  • Miquel Pons
  • Ernest Giralt
چکیده

(15)N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. (15)N CSA/(1)H-(15)N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of (15)N R1 rates through (1)H-(15)N HSQC-based experiments. CC is usually suppressed through a train of 180° proton pulses applied during the variable (15)N relaxation period (T), which can perturb water magnetization. Thus CC cancellation is required in such a way as to minimize water saturation effects. Here we examined the level of water saturation during the T period caused by various types of inversion proton pulses to suppress CC: (I) amide-selective IBURP-2; (II) cosine-modulated IBURP-2; (III) Watergate-like blocks; and (IV) non-selective hard. We additionally demonstrate the effect of uncontrolled saturation of aliphatic protons on (15)N R1 rates. In this paper we present an optimized pulse sequence that takes into account the crucial effect of controlling also the saturation of the aliphatic protons during (15)N R1 measurements in non-deuterated proteins. We show that using cosine-modulated IBURP-2 pulses spaced 40 ms to cancel CC in this optimized pulse program is the method of choice to minimize systematic errors coming from water and aliphatic protons saturation effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins.

The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below approximately 25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, th...

متن کامل

Long-range structural restraints in spin-labeled proteins probed by solid-state nuclear magnetic resonance spectroscopy.

Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is rapidly developing as a technique for the atomic-level characterization of structure and dynamics of biomacromolecules not amenable to analysis by X-ray crystallography or solution NMR.1-5 While nearly complete resonance assignments have been achieved for multiple 13C,15N-enriched proteins up to ∼100 aa,1,...

متن کامل

NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain

The interaction between the acidic transactivation domain of the human tumor suppressor protein p53 (p53TAD) and the 70 kDa subunit of human replication protein A (hRPA70) was investigated using heteronuclear magnetic resonance spectroscopy. A 1H-15N heteronuclear single quantum coherence (HSQC) titration experiment was performed on a 15N-labeled fragment of hRPA70, containing the N-terminal 16...

متن کامل

Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR 15N-relaxation measurements.

The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide...

متن کامل

R1 correction in amide proton transfer imaging: indication of the influence of transcytolemmal water exchange on CEST measurements.

Amide proton transfer (APT) imaging may potentially detect mobile proteins/peptides non-invasively in vivo, but its specificity may be reduced by contamination from other confounding effects such as asymmetry of non-specific magnetization transfer (MT) effects and spin-lattice relaxation with rate R1 (=1/T1). Previously reported spillover, MT and R1 correction methods were based on a two-pool m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2015